

Meet the Speaker

Brandon Zuppardo

President of Aztech Reliability

- A proud Fluke Reliability partner representing East Texas
- Subject matter expert in alignment
- Certified in Level 2 vibration and Level 1 ultrasound
- Over 13 years in maintenance and reliability

Reliability

Agenda

Defining and visualizing soft foot

Types of soft foot

Why soft foot is problematic and its consequences

Diagnosing and correcting

Benefits of soft foot correction

What is Soft Foot?

Soft foot occurs when one or more feet of a machine are not making proper contact with its base, causing uneven support.

Impact: Leads to machine misalignment, vibration, stress on components, and potential wear or failure over time.

Visualizing Soft Foot

Imagine a wobbly chair with one leg shorter or obstructed...

Similar effect in machinery: If feet aren't evenly supported, the machine will wobble or become unstable.

Result: Imbalanced, misaligned machinery, causing inefficiency and possible damage

Types of Soft Foot

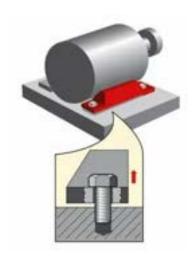
PARALLEL SOFT FOOT

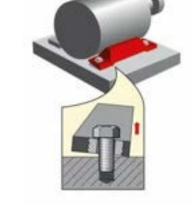
ANGULAR SOFT FOOT

Rocking

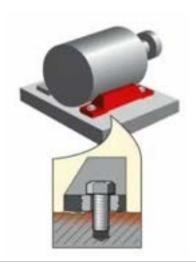
Uneven feet or bases

Angled

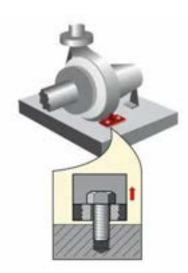

- Bent feet
- Bowed baseplate


Squishy

- Debris buildup under feet
- Too many shims


Induced

 External forces: misaligned machine frame, pipe strain



SQUISHY FOOT

INDUCED SOFT FOOT

Why Is Soft Foot a Problem?

Complicates alignment:

- Makes it harder to achieve repeatable measurements during alignment
- Even a small wobble causes the machine to stand slightly differently each time, slowing down the alignment process

Strain on machine components:

- Increases load on bearings once the machine is bolted down
- Causes strain on the machine casing
- Misaligned, long-term damage: shafts, bearings, pump and gearbox issues, seal failure, and bent shafts
- Increased energy consumption and corrosion
- Cracks can form in the machine casing

Equipment failure: Left unchecked, these issues can lead to catastrophic equipment failure

Consequences of Soft Foot

Vibration: Improper contact leads to excessive vibrations

Increased wear: Misalignment accelerates wear on machine components

Decreased efficiency: Loss of operational performance

Potential machine failure: Over time, can cause catastrophic failure if not addressed

Energy loss: Soft foot causes the machine to run inefficiently, leading to higher energy consumption

Diagnosing Soft Foot

Challenges:

- Hard to spot, especially for inexperienced crews
- Diagnosing soft foot can be a slow and patient process

Tools:

 Specialized diagnostic tools can help identify soft foot quickly and accurately

Correcting Soft Foot

Adjusting machine feet: Ensure all feet make full contact with the base

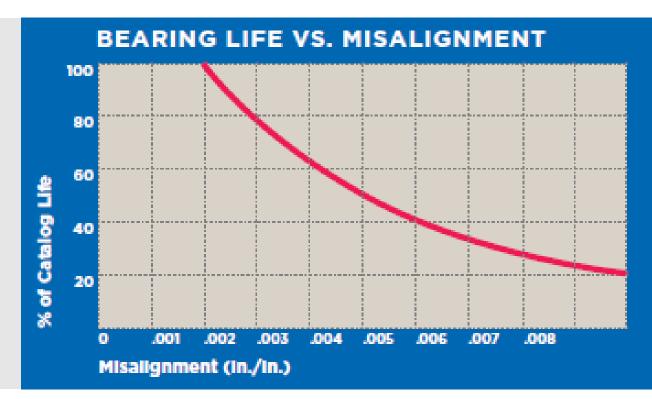
Shimming: Use shims to level and support uneven feet

Cleaning: Remove debris or obstructions under machine feet

Alignment: Re-align the entire machine frame to correct the imbalance

Benefits of Correcting Soft Foot

Improved operational efficiency:


Correct alignment leads to smoother, more efficient operation.

Reduced maintenance costs:

Prevents further damage and wear on components.

Increased machine lifespan:

Proper support and alignment extend the life of the equipment.

Source: Robert E. Biggs, Engineering Conference 1990

Reliability Hits the Road!

SCAN TO RSVP

POLL QUESTION No. 1

Question?

(Click only one answer)

- Answer 1
- Answer 2
- Answer 3
- Answer 4

POLL QUESTION No. 2

Question?

(Click only one answer)

- Answer 1
- Answer 2
- Answer 3
- Answer 4

QUESTIONS?

Thank you!

Brandon Zuppardo

Brandon@aztechla.com https://www.aztechla.com

To learn more about Fluke Reliability and our Webinar Series

SURVEY

Please provide feedback on this webinar by responding to our survey. Do you want a Certificate of Attendance?

WEBINAR SERIES

Visit this page to learn more about our Webinar Series:

https://www.accelix.com/communi ty/best-practice-webinars/

DEMO

Visit Accelix.com for a free demo of our Connected Reliability

Framework.

Icon suggestions

Icon suggestions

